
3 RESULTS

1 Introduction

The results shown in this report are obtained from running LDAS at 1/4◦ using 30
minute and 1 hr timesteps. The output is written in binary format. GEOS base
forcing is used in the runs. No observed forcings are considered for these results.

From the results obtained during baselining, using NOAH at 1/4◦ on the SGI
AMES systems, the computational intensity was measured to be approximately 4.4-5
ms/gridcell/day.

2 Code Improvements

It was noticed that the subroutines that takes vegetation greeness fraction and surface
albedo data and interpolates to the actual values for a certain date was being invoked
during every timestep. These routines involve reading of greeness and albedo files for
interpolation and was modified to be read only once a day.

The land surface processes have rather weak horizontal coupling and can be par-
allelized. For NOAH, the domain was decomposed statically based on the number
of processors, with each processor working on an equal chunk of the domain. We
performed experiments with the pool of tasks design, where the computational load
is automatically balanced. In those experiments, the number of tiles calculated by
each processor was identical, leading to the conclusion that computationally NOAH
LSM runs are not significantly different for different parts of the domain.

The land surface model runs are performed in parallel by each processor in their
own domain. A master processor is designed to handle the preprocessing before land
surface model runs, and the output. The communication overhead in this model of
computation is minimal since the processors communicate with the master only for
decomposing the domain and for gathering information before writing output.

The temporal interpolation routines were improved by eliminating the ocean
points. The spatial interpolation is conducted by calling the library routine called
ipolates. The source code for ipolates were optimized for bilinear and budget op-
tions to improve the performance.

The cleanup and optimizations performed in the code also includes the use of
internal files in fortran to eliminate unnecessary I/O in the program. Some of the
direct access file routines were converted to sequential access routines also.

3 Results

Figure 1 shows the improvements in the code and the corresponding runtimes. It can
be seen that for 30 minute and 1hr timesteps, the best performance of the code so

1



3 RESULTS

far is 1.3 and 0.99 ms/gridcell/day respectively.

1.3

0.99

800

1000

1200

1400

1600

1800

2000
T

ot
al

 R
un

tim
e 

(s
ec

s)

Number of Processors
1 8 16 32 128

TS = 30min
TS=1hr

ipolates imrovd, TS=30min
ipolates imrovd TS=1hr

Figure 1: NOAH execution times on HALEM

The current code is further analyzed to identify the execution times of the individ-
ual components. Figure 2 shows the cumulative effect of different components on the
overall performance of the code. The numbers are calculated for a respresentative run
using 16 processors and 30 minute timesteps. The computational intensity numbers
are also shown alongwith each component.

It can be seen that in the current code, the interpolation routines contribute
significantly to the computational intensity of the code. The sequential execution of
the code requires a computational intensity of 1.6. Since NOAH LSM is a very fine
grained model, performance improvement by parallelization is not very significant.
The contributions of each component as percentages of the total execution time is
shown in Table 1.

2



3 RESULTS

1.3

0.97

0.85

0

200

400

600

800

1000

1200
T

ot
al

 R
un

tim
e 

(s
ec

s)

Preprocessing Interpolation LSM runs Output

Figure 2: Componentized NOAH execution times

Table 1: Percentage of total computational time for different components

Routine Percentage
Preprocessing 7.3
Interpolation 58.0

ipolates 46.0
zterp 12.0

LSM runs 8.5
Output 25.0

3


	Introduction
	Code Improvements
	Results

